人工智能技术与大数据在线阅读
会员

人工智能技术与大数据

计算机网络人工智能13.3万字

更新时间:2021-04-09 20:44:12 最新章节:12.6 小结

立即阅读
加书架
下载
听书

书籍简介

本书分为两个部分,共12章。第1章到第5章介绍了大数据的本体论、机器学习的基本理论等内容,为具体场景、算法的实践奠定了基础。读者可以了解到,在工程实践中,对大数据的处理、转化方式与人类学习知识并将其转化为实践的过程是多么相似。在对机器学习的介绍中,会对其数学原理、训练过程做基本的讲解,并辅以代码帮助读者了解真实场景中技术工具的使用。第6章到第12章提供了多个不同的用例,章节之间彼此独立,介绍了如何用人工智能技术(自然语言处理、模糊系统、遗传编程、群体智能、强化学习、网络安全、认知计算)实现大数据自动化解决方案。如果读者对Java编程语言、分布式计算框架、各种机器学习算法有一定的了解,那么本书可以帮助你建立一个全局观,从更广阔的视角来看待人工智能技术在大数据中的应用。如果读者对上述知识一无所知,但是对大数据人工智能的技术、业务非常感兴趣,那么可以通过本书获得从零到一的认知提升。
品牌:人邮图书
译者:赵运枫 黄伟哲
上架时间:2020-10-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

(印度)阿南德·德什潘德 马尼什·库马
主页

同类热门书

最新上架

  • 会员
    本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快
    徐从安 李健伟 董云龙 孙超等计算机9.9万字
  • 会员
    本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最
    孙健编著计算机7.4万字
  • 会员
    本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大
    于俊 刘淇 程礼磊 程明月计算机12.3万字
  • 会员
    本书具体包含以下内容:首先,探讨ChatGPT对法律界的冲击,以及律师等从业者的不同反应,进一步分析AI技术对行业的影响和发展趋势。接着,简要介绍ChatGPT的技术原理及应用场景。随后,详细讨论如何将AI力量融入律师职业路径,构建专业律师成长的新飞轮。接下来,分别讨论如何将ChatGPT(GPTs)应用于渠道与案源、检索与研究、案件分析,以及法律文书撰写与合同审核,实现部分日常事务自动化执行。之
    轩珍珍 徐伟浩计算机10.6万字
  • 会员
    本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,
    滕越主编计算机23万字
  • 会员
    人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2
    黄佳计算机14万字
  • 会员
    本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经
    张旭东编著计算机20.6万字
  • 会员
    这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智
    苏之阳 王锦鹏 姜迪 宋元峰计算机12.1万字
  • 会员
    ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。
    梅磊 施海平 陈靖计算机13.2万字