2.2.1 四则运算法则
定理1 设函数u=u(x)及v=v(x)均在点x处可导,那么它们的和、差、积、商(除分母为零的点外)也均在点x处可导,且
(1)(u±v)′=u′±v′;
(2)(uv)′=u′v+uv′;
(3)(v≠0).
定理中(1),(2)可以推广到有限个函数的情形.
推论1 [cu(x)]′=cu′(x)(c为常数);
推论2 .
例1 已知函数,求f′(x).

例2 已知函数,求f′(x).

例3 已知函数f(x)=xcosxlnx,求f′(x).
解 f′(x)=(xcosxlnx)′=(x)′cosxlnx+x(cosx)′lnx+xcosx(lnx)′
=cosxlnx-xsinxlnx+cosx.
例4 已知函数,求f′(x).

发现:因为 ,ln2都是常数,所以
,(ln2)′=0.
例5 证明(tanx)′=sec2x.

所以
(tanx)′=sec2x.
同理可证明
(cotx)′=-csc2x,(secx)′=secxtanx,(cscx)′=-cscxcotx.